PROGRESS IN NATURAL SCIENCE

Vol. 17, No. 7, July 2007

SHORT COMMUNICATIONS

A language for easy and efficient modeling of Turing machines

Pinaki Chakraborty

(School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi 110067, India)

Accepted on January 31, 2007

Abstract

A Turing Machine Description Language (TMDL) is developed for easy and efficient modeling of Turing machines.

TMDL supports formal symbolic representation of Turing machines. The grammar for the language is also provided. Then a fast single-
pass compiler is developed for TMDL. The scope of code optimization in the compiler is examined. An interpreter is used to simulate the
exact behavior of the compiled Turing machines. A dynamically allocated and resizable array is used to simulate the infinite tape of a Turing
machine. The procedure for simulating composite Turing machines is also explained. In this paper, two sample Turing machines have been
designed in TMDL and their simulations are discussed. The TMDL can be extended to model the different variations of the standard Tur-

ing machine.

Keywords: Turing machine, compiler, interpreter, simulation.

Turing machines are the most generally con-

(I, They are widely

structed models of computation
used in the study of the concept of formal languages
and the theory of computation. Despite of their im-
portance in theoretical computer science, not a great

deal of work has been done on the simulation of Tur-
ing machines. The Tutor Turing machine simula-

tor) is a competent tool where the Turing machines
are represented by flow diagrams. But it is intricate
and not suitable for novice users. Hence, there is a
need of a simple technique to study the working of
Turing machines.

In this paper a simple language for modeling
Turing machines is developed. The language is called
the Turing Machine Description Language (TMDL.).
In TMDL, a Turing machine is represented in a way
similar to that in any standard text. A compiler is
then developed to translate a Turing machine written
in TMDL to an Intermediate Language (IL). Final-
ly, an interpreter is used to simulate the functioning
of the compiled Turing machine.

1 The language

The TMDL is a simple language that can be used
to design all possible Turing machines. It supports
formal symbolic representation of Turing machines.

% E-mail; pinaki- chakraborty - 163@yahoo. com

No flow graph or Hernes table is required. The
TMDL gains its advantage by modeling Turing ma-
chines far more efficiently than other languages. A
TMDL program contains only the necessary informa-
tion about a Turing machine and that also in a sym-
bolic form. The TMDL is neither a procedural lan-
guage nor an object oriented language as it does not
implement any algorithm or instantiate any object. It
is similar to hardware description languages except
that the hardware of a Turing machine is virtual. Us-
ing this language requires no programming skill or
any in depth study of the language specifications. So,
it is advantageous for students and other naive users.
A TMDL program can be divided into two major
parts—a Turing machine definition and a transition
function definition. The TMDL grammar is as fol-
lows.

program—tm_definition tf definition;

tm_definition—>tm = (]state_list}, |symbol.
list {, | tape_symbol_list |,
transition _function, state,
tape _symbol, | accepting.
state.list});

tf _definition—=transitions | e

state_list—>state, state_list | state

symbol .1ist—symbol, symbol_list | symbol

tape _symbol _list— tape _symbol, tape_symbol_

868 www. tandf. co. uk/journals Progress in Natural Science Vol.17 No.7 2007

list | tape _symbol

accepting _state_list—>state_list | ¢
transitions -> transition _function (state,
symbol) = (state, tape_sym-
bol, direction), transitions |
transition _function (state,

symbol) = (state, tape _sym-
bol, direction)

In this grammar, t® stands for the keyword TM. A
state is a sequence of lowercase letters, digits and
underscore (_) characters starting with a letter and
having a maximum of 8 characters. A symbol is any
lowercase letter or any digit. A tape _ symbol is ei-
ther a symbol or an underscore (_) character. A
transition _ function is an uppercase letter except
L and R. A direction is either L or R.

2 The compiler
2.1 The design

The TMDL compiler (TMDLC) is a fast single-

4] . . .
! written in C++ . It takes as input a

pass compiler“'
TMDL program which is a description of a Turing
machine and produces as output a functionally equiva-

lent program in the IL. Therefore, the TMDLC can
be represented as Coya- . The TMDLC consists of
four phases, viz., lexical analyzer, syntax analyzer,
semantic analyzer and the code generator (Fig. 1).
Apart from these four phases, there is a bookkeeping
module and an error handler module. The syntax ana-
lyzer plays the leading role in the process of compila-
tion and the other three passes run as co-routines in
the hegemony of the syntax analyzer. The syntax an-
alyzer calls the lexical analyzer whenever the former
needs a token. The lexical analyzer returns the next
token in the input program on being called. On suc-
cessful syntax analysis of a part of a program, the se-
mantic analyzer and then the code generator are in-
voked for semantic analysis and code generation re-
spectively. The syntax analyzer used in the TMDLC
is a top-down predictive parser. The parser can recog-
nize the next production rule to be used in the deriva-
tion by observing only the next token in the input
stream. To design such a parser, the TMDL gram-
mar is required to be converted to its L1.(1) equiva-
lent. The bookkeeping module maintains a symbol
table to store the names of the states of the Turing
machine. The names are inserted in the symbol table
by the lexical analyzer. The semantic analyzer and

the code generator use the information stored in the
symbol table. The error handler used in the TMDLC
is a trivial one. On detecting an error, it generates an
error message and stops the process of compilation.
The error messages are descriptive and help in debug-
ging the program. The error handler is called by the
lexical analyzer, the syntax analyzer and the semantic
analyzer on the occurrence of lexical error, syntax er-
ror and semantic error respectively.

Source program

Lexical Analyzer |

il

Syntax Analyzer

[iy £y

*| Semantic Analyzer [

1

Code Generator

'

Object program
Fig. 1. Block diagram of the TMDLC.

2.2 Scope of code optimization

A code optimization phase can be included just
before the code generator in the TMDLC. There are
three key sources of optimization—useless tape sym-
bols, useless states and useless transitions. A non-
blank tape symbol, that is not an element of the input
alphabet and not written back on the tape by any
transition, will never appear on the tape and hence it
is useless. A state that is not reachable from the ini-
tial state for any input string is useless as it is not pos-
sible for the Turing machine to be in that state. A
transition that is defined in terms of either a useless
tape symbol or a useless state is also useless. For ev-
ery Turing machine T = (Q, X, I, 8, q4, (1, F)
there exist a Turing machine T such that T" does
not contain useless tape symbols, useless states and
useless transitions and L(T)= L(T).

Detection of useless tape symbols:

A tape symbol ¢s; € I' is useless if and only if #s,
#[, s, € Z and there exists no transition of the
form 8(q;, ts,) = (g, ts, dir) where ts, € I' and
dir€{L,R}.

Detection of useless states:

Progress in Natural Science Vol.17 No.7 2007 www. tandf. co. uk/journals 869

A null graph with the vertices labeled by the
states of the Turing machine is drawn. A directed
edge (g;, g;) is added to the graph for the transition
8(q,, ts)) = (q,, ts,, dir), where ts,, t5, € I' and
dir€ {L, R}. A state ¢, is useless if and only if
there exists no directed path from the vertex labeled
g, to the vertex labeled g, in the graph.

Code optimization by the removal of useless tape
symbols, useless states and useless transitions requires
reading the input program more than once and hence
cannot be implemented in a single-pass compiler.
Such a code optimizer can be included only in a multi-
ple-pass compiler. Consequently, the code optimizer
phase is not included in the TMDLC.

3 The interpreter
3.1 The design

The IL program generated by the TMDLC con-
tains information just enough to simulate the func-
tioning of the Turing machine. The IL program is
free from lexical, syntactic and semantic errors as
they have been handled by the TMDLC. This IL pro-
gram acts as an input to the Turing machine inter-
preter (TMI). The TMI starts by copying the input
string on the tape (Fig. 2). The tape is one-dimen-
sional and infinite in both directions. If the TMI
finds a symbol in the input string that is not an ele-
ment of the input alphabet then it calls the error han-
dler. The TMI sets the given initial state as the cur-
rent state and the leftmost input symbol as the cur-
rent tape symbol of the Turing machine. Then the
current state and the current tape symbol are matched
with the antecedent parts of the transitions. If a
match is found, the Turing machine moves to the
state mentioned in the consequent part of that transi-
tion. The tape symbol mentioned in the consequent
part is written back on the tape and the read/write
head moves one unit in the direction specified in the
consequent part. If a match is not found, then Tur-
ing machine is said to halt. The process of matching
is carried out iteratively until the Turing machine
finds itself in an accepting state. It is assumed that no
transition is defined for any accepting state, so the
Turing machine will accept the input string whenever
it enters an accepting state. The configuration of the
Turing machine is displayed in each iteration of the
matching procedure using the symbol table passed on
by the TMDLC in the IL program.

Input string

Element
of input

Error handler j
alphabet?

HEEENEREENREEE

Tape
‘ Transition
Configuration function

!

Matching
process

1

New configuration

Symbol Acceptor
table
Display ACCEPT
Fig. 2. Block diagram of the TMI.
3.2 The tape

Realization of an infinite tape is not possible in
any physical computer. The TMI uses a dynamically
allocated array to simulate the tape. The dynamically
allocated array is resized on the demand of the Turing
machine.

3.3 Representation of the configurations

Let us consider a configuration of a Turing ma-
chine, as shown in Fig. 3, with the current state g,
and the current tape symbol a;. Let the tape content
be a,a;ra;_ja4,,,"a,_,a,, wherea;anda, are
the leftmost and the rightmost nonblank tape symbols
respectively. The TMI represents such a configura-
tion as aya,*a;_1944a;,,"""a,-1a,. However, if
a;_; is the rightmost nonblank symbol on the tape

ql

Fig. 3. A configuration of a typical Turing machine.

870 www. tandf. co. uk/journals Progress in Natural Science Vol.17 No.7 2007

then the configuration is represented as aja,*"a;_;
g;13, where [J stands for the blank tape symbol.

3.4 Integrating the TMDLC and the TMI

Till now, the TMDLC and the TMI have been
discussed separately. Fig. 4 illustrates how these two
components are used in cascade and what are the dif-
ferent files used by the system. The TMDL program
is stored in a . TM file. This file is compiled using the
TMDLC. On successful compilation, TMDLC stores
the object program in a . ILF file. The . ILF file a-
long with the file containing the input string is pro-
vided to the TMI for interpretation. The TMI pro-
duces a file containing the final tape content and an-
other file containing the configurations that the Tur-
ing machine passes through. The latter also contains
the final result, i.e., accept or halt.

file TM

TMDLC

fileJLF

tapein. TXT tapeout TXT

step. TXT
Fig. 4. The system layout.

3.5 Composite Turing machines

A composite Turing machine is a sequence of
simple Turing machines each using the output of its
immediate predecessor as the input. Such a composite
Turing machine can be simulated by interpreting one
elementary Turing machine at a time and using its
output as the input of the next Turing machine in the
sequence.

4 Results and discussion

In this section the performance of the TMI is il-
lustrated for two Turing machines modeled in

TMDL.
Turing machine 1

The TMDL program given below defines a TM

(6, 2)'! that accepts the set of all binary strings
whose decimal equivalents are multiples of 5.

™ = ({q0, q1, 92, 93, g4, gf{, {0, 1}, {0, 1, _ |,

D,q0, -, {afl);
D(CIO, 0) = (qoo 0, R),
D(q0,1) = (q1,1,R),
D(q1,0) = (q2,0,R),
D(q1,1) =(q3,1,R),
D(q2,0) = (q4,0,R),
D(g2,1) = (q0,1,R),
D(qg3,0) = (q1,0,R),
D(q3,1) =(q2,1,R),
D(q4,0) = (q3,0,R),
D(q4,1) = (q4,1,R),
D(qo0, -) = (af, -,R);

The Turing machine accepts the string 1100100 after
moving through the following configurations.

01100100 |- 1q1100100 |- 11g300100 |-
110q10100 |- 1100q2100 |- 11001q000 |-
110010900 |- 1100100q0_ |- 1100100 _gf _ (AC-
CEPT)

But, for the input string 1100101 the Turing ma-
chine halts after moving through the following config-
urations.

q01100101 |- 1q1100101 |- 11q300101 |-
110q10101 |- 11002101 |- 11001q001 |-
110010q01 |- 1100101ql_ (HALT)

Turing machine 2

The TMDL program given below defines a TM

(3,2)[5] that goes into an infinite loop for an input
string aa.

™= ({q0, ql, q2{, {a, bi, {a, b, _ |, D, q0, _,
{q21);

D(q0,a) = (ql,3,R),

D(q1,a) = (q0,a,L),

D(q1, -) =(q2, -,R);

The Turing machine keeps oscillating between the
configurations q0aa and aqla and never comes out of
the loop. As a result, the TMI enters an infinite loop
too.

It is observed that for a given input string and a
Turing machine there may arise three situations.
Firstly, the Turing machine may accept the string in
a finite number of steps. Secondly, the Turing ma-
chine may traverse a finite number of steps before
halting in a configuration for which no transition is

Progress in Natural Science Vol.17 No.7 2007 www. tandf{. co. uk/journals 871

defined. Lastly, the Turing machine may enter in an
infinite loop.

5§ Conclusions

[t is concluded that TMDL is an easy and effi-
cient language to design Turing machines. The salient
feature of the language is that a Turing machine can
be represented in a way that is very similar to that
used in a textbook. The TMI simulates the exact be-
havior of a Turing machine modeled in TMDL. The
technique presented in this paper can be used to study
the working of all Turing machines. The TMDL can
be extended to allow modeling the different variations
of the standard Turing machine like Turing machine
with a stay option, Turing machine with a semi-infi-
nite tape, multi-tape Turing machine, multidimen-

sional Turing machine, nondeterministic Turing ma-
chine, universal Turing machine, linear bounded au-
tomaton and hybrid Turing machine. This will re-
quire only minor changes in the TMDLC and the
TMI.

References

1 Linz P. An Introduction to Formal Languages and Automata. 4th
Ed., Boston: Jones and Bartlett Publishers, 2006

2 Pierce JC, Singletary WE and Vander Mey JE. Tutor—A Turing
machine simulator. Information Sciences, 1973, 5: 265—278

3 Aho AV and Ullman JD. Principles of Compiler Design. New Del-
hi: Narosa Publishing House, 1989

4 Aho AV, Sethi R and Ullman JD. Compilers—Principles, Tech-
niques, and Tools. Delhi: Pearson Education Pte. Ltd., 1999

5 Michel P. Small Turing machines and busy beaver competition.
Theoretical Computer Science, 2004, 326(1—3): 25—56

